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It has been known for quite a long time that polymers filled with electrically conductive 
particles, foils or fibres exhibit a distinctive dependence of conductivity on filler volume 
fraction. With a rise in filler content, there is always a drastic increase in composite 
conductivity by the order of ten magnitudes at a certain threshold, namely, the critical 
volume fraction. Such a transition-like change in conductivity is usually interpreted as 
percolation. Many models have been proposed for explaining the conduction mechanism 
involved, but often they possess evident drawbacks mainly due to the negligence of relative 
filler arrangements or the Euclidean geometric description of the arrays. The present work 
focused on the prediction of the critical volume fraction by a new electrical conductive 
model, based on the fractal technique and the generalized unit-cell method proposed by 
Pitchumani and Yao for modelling the thermal conductivity of fibrous composites. It was 
found that the electrical conduction behaviour of a polymer composite is governed by both 
a filler geometry factor and a material factor of the components. The critical volume fractions 
estimated by the model are in good agreement with experimental results taken from the 
literature. In addition, possible improvements of the present approach are discussed. 

1. Introduction 
As a member of the functional composite materials 
family, an electrically conductive polymer composite 
comprised of conductive fillers (e.g. graphite, metal 
powder or carbon fibre) and an insulating polymer 
matrix, plays an important role in modern industries 
owing to its advantages of light weight, good proces- 
sability, chemical stability, cost effectiveness and easy 
regulation of electrical conductivity and mechanical 
performance within a wide range. In recent years, 
conductive polymeric composites have been success- 
fully used, e.g. for electrostatic discharge (ESD)pro- 
tection, electromagnetic-radio frequency interference 
(EMI/RFI) shielding, self-control heating and defor- 
mation-conductivity transducers [1, 2]. 

The mechanical and physical properties of the com- 
posite are mostly dominated by the nature of the filler, 
whereas the polymer matrix determines the environ- 
mental characteristics of the composite, Therefore, the 
overall composite properties can be tailored to fit the 
desired application through proper choice of filler and 
matrix resin [3]. 

With respect to the mechanisms of conductivity, 
usually two considerations must be made. One deals 
with the formation of electrical paths through the 
composite, and the other looks into the movement 

details of electrons along these electrical paths. Both 
mechanisms are highly dependent on the filler content 
[4]. In the case of very low filler concentration, the 
composite's conductivity remains almost the same as 
that of the polymeric matrix. If the filler loading ex- 
ceeds a certain critical value, however, a drastic rise in 
the composite's conductivity by ten orders of magni- 
tude can occur, meaning that at least one conductive 
network is formed. The subsequent change in electri- 
cal conductivity with a further increase in filler frac- 
tion takes place again rather slowly. In order to model 
such an S-shaped conductivity versus filler content 
curve, many theoretical treatments have been pro- 
posed; in all of these cases the critical filler volume 
fraction necessary to support a continuous electrical 
path in the composite received special attention [5]. 
Evidently, this is a problem of scientific value, but it is 
of practical importance as well. For example, it is often 
expected to achieve sufficient conductivity (a )a t  
lowest carbon black content so as not to lower sub- 
stantially the composite's strength, or (b) at lowest 
carbon fibre content for economic reasons. 

Generally, the transition in composite conductivity 
is attributed to the percolation phenomenon which is 
based on the fact that the conductive fillers are suffi- 
cient to come into contact with one another as the 
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filler loading exceeds the threshold concentration. It 
has been experimentally demonstrated that the critical 
filler content depends upon the structure, conductiv- 
ity, dimension, geometry, and distribution of the fillers 
in the Composite. Further factors are the rheology and 
thermal behaviour of the polymer matrix, and the 
thermodynamic interaction between filler and poly- 
mer. Hence, many investigators have attempted to 
interpret the percolation and to predict the critical 
filler volume fraction from these aspects. Two typical 
approaches are briefly described below. Kirkpatrick 
[6] and Zallen [7] developed a statistical model that 
assumes site or bond percolation in the lattice coordi- 
nation. They derived the scaling relation 

cs = (Yo(V- Vc)' (1) 

where cy is the composite conductivity, Cyo the filler 
conductivity, V the filler volume fraction, Vo the criti- 
cal filler volume fraction, and t the critical index of 
conductivity. The theory has been experimentally veri- 
fied in some composites containing carbon black [8]. 
However, the limitation of this model lies in the fact 
that Vc and t are only functions of the lattice dimen- 
sion, and many studies found that the predicted 
Vc deviated greatly from the values measured [9]. In 
another approach to explain the reason why V~ varied 
with the species of filler and matrix resin, Miyasaka 
et  al. [103 avoided the complicated geometry effects. 
Instead they proposed a model from the view point of 
thermodynamics, assuming that the coagulation of 
conductive fillers forms networks at a certain inter- 
facial excess energy, Ag*. The critical concentration in 
the case of spherical particles was thus given as 

Vc = [1 + 3(V~/2 - ]tlp/2)2/(Ag:gR)]-i (2) 

where Yc and Yv are the surface tensions of filler par- 
ticles and polymer, respectively, and R is the radius of 
filler particles. By considering the melt viscosity of the 
polymer and the moulding time during composite 
processing, a modified version of Equation 2 was 
subsequently suggested by Sumita et al. [11], and it 
was supported by their experimental results. Owing to 
the limitation of their initial basic assumptions, this 
thermodynamic model is only applicable for non- 
polar systems, e.g. polyethylene or polypropylene. 
However, it sets an example that geometry problems 
should not be emphasized too much in the study of 
a composite's conduction mechanisms. 

It can be concluded from the literature that a model 
which is able to describe the electrical conductivity of 
a composite might be at least of the form 

(~ = f ( V ,  Cro, "filler arrangement") (3) 

In the view of composite manufacturing, filler arrange- 
ment is a key factor controlling ultimate material 
performance; it is factually related not 0nly to the 
particular processing technique but also to the filler 
dimension and geometry, the species of filler and 
matrix, and filler-matrix interfacial effects. The avail- 
able models, however, usually neglect the relative filler 
arrangement or treat the problem by means of Eucli- 
dean geometry, which is not useful in the practical 
disordered distribution. Therefore, an appropriate 

characterization of filler arrangements should have 
a top priority for developing a more rational model. 

In the present work, attempts were made to find 
a universal method for estimating the critical filler 
volume fraction in conductive composites, with the 
hope of providing a scientific basis for subsequent 
work on a new and further improved model. As the 
first step~ the filler arrangements were quantified by 
using fractals in accordance with Pitchumani and 
Yao's analysis of thermal conductivities in fibrous 
composites [12]. This allows the geometric complex- 
ity and the enormous computation time required for 
statistical simulation to be reduced. In particular, the 
fractal concept developed by Mandelbrot [131 is used 
to describe a material microstructure that is not 
Euclidean, but with a non-integral, so-called fractal 
dimension [141. Pitchumani and Yao [12] demon- 
strated that a cross-section of a fibrous composite 
exhibits self-similarity over a small range of scaling. 
They determined the fractal dimensions of such a sys- 
tem, based on thisconcept, and a generalized unit cell 
representing the geometric pattern of the cross-section 
was constructed (i.e. filler arrangement in the com- 
posite was thus characterized), and then a thermal 
model was derived [ 12]. Because the fractal dimension 
could reflect the connectedness of the fillers, it might 
also be directly correlated to the probability of the 
formation of electrically conductive networks in the 
composite at various filler fractions. 

By considering the electrical conduction model, 
a two-phase composite system is employed and its 
electric conductivity is written as 

with 

- - G - -  1 - G (4a) 
( y  ~ (O F (O s 

cry = Vc%+(1--V)CYm (4b) 

% = [ V / c %  + (1 - V )/(Ym]- 1 (4C) 

where CYm denotes the matrix conductivity, (yp and 
% are the conductivity of the composite in the limiting 
cases of parallel and serial connection, respectively, 
and G is a distribution function that has the value of 
1 for the parallel and 0 for the serial model (Fig. 1). It is 
clear that G reflects the contact probability of fillers to 
form conductive networks, and it concerns the relative 
filler arrangement as well as other microscopic details 
of the composite. As long as the measure of G is 
obtained, the composite electric conductivity can be 
deduced from Equation 4a, which coincides factu- 
ally with the same functional form as proposed in 
Equation 3. 

2. Modelling 
For the convenience of evaluation, the fillers are as- 
sumed to be spherical particles of identical diameter, 
D, distributing in the matrix in the form of a face- 
centred cubic (fc c) structure (Fig. 2a). A cross-section 
of the composite is randomly sampled in the x - y  plane 
(Fig. 2b). Following the technique employed elsewhere 
[12], the section is divided into small grids (about 
one-tenth the particle diameter in size) in accordance 
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Figure 1 The electrical conduction model proposed for a two-phase composite. (a) Parallel model; (b) serial model. 

with the sandbox method, in order to measure the 
fractal dimension. A line scale of length L is put inside 
the cross-section and scans the whole section in the 
x-direction. When the centre of the line scale falls on 
the fillers, the intercepts' length between the line scale 
and fillers is added together and denoted as M(L) (Fig. 
2c). The averaged length of the intercepts scaling with 

the line scale L, M(L), equals the total M(L) divided 

by the interception times. A series of values of M(L) 
can be yielded by changing the length of L. By plotting 

log M(L) against log L, the slope estimated with the 
least-square method gives the fractal dimension in the 
y-direction. It should be noted that the length of the 
line scale cannot be varied fi'eely. As mentioned 
earlier, an overall composite cross-section might not 
be a real fractal and shows self-similarity only within 
a small scaling range, therefore the definition of the 
range of L values is absolutely necessary. Owing to the 
facts that the relative filler arrangement is a very 
important factor in this research and that the most 
fundamental pattern of the cross-section illustrated in 
Fig. 2b is one filler particle, the lower bound of L must 
be the particle diameter, D. On the other hand, the 
approach made by Pitchumani and Yao E12] sugges- 
ted that the maximum length scale must not exceed 
the interfiller distance between three to four fillers. The 
upper bound of L corresponding to a given filler 
volume fraction is set to A = (2rc/3 V)1/3D/cos (re/4). 

Owing to the configuration of fcc, filler arrange- 
ment is identical in both the direction x and y. So the 
fractal dimension in the x-direction is just the same as 
that in the y-direction, and it is represented by an 
identical symbol, d. According to the procedures 
above, the fractal dimensions of composites with dif- 
ferent filler volume fractions can be calculated. 

As a simplified but effective method, it is usually 
possible to obtain information on a complicated sys- 
tem through investigation of a generalized unit cell. In 
order to relate the macroscopic performance to the 
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filler content and the fractal dimensions, Pitchumani 
and Yao constructed the polygonal Wigner-Seitz cells 
of different sizes around each fibre in a composite 
section [12, 15], which were then represented by an 
equivalent rectangular cell having the same physical 
behaviour. Finally, they yielded a dimensionless gen- 
eralized unit cell which was only the function of filler 
volume fraction and relative filler arrangement. Ap- 
plying their results to the case here, a simplified 
description of the generalized unit cell containing 
a generalized filler particle of dimensionless diameter 
D' (as adjusted to the present system) can be expressed 
as follows 

with 

14 ~ld/(2d - 2) 
o '  = (Sb)  

where L' is the size of the square generalized unit cell 
(Fig. 3). 

The filler volume fraction dependence of the size of 
the generalized unit cell representing composites filled 
with particles of different diameters is shown in Fig. 4. 
L' decreases with increasing V in such a way that at 
lower filler content, L' drops rapidly, but in the case of 
higher loadings varies slowly. It becomes clear from 
this figure, that at lower filler fraction (i.e, at a longer 
interfiller distance), the value of L' is larger. Fig. 4 fur- 
ther reveals that the drastic decrease occurs in the 
range of V < 15 vol%, which is analogous to the 
conventional electrical resistivity versus filler volume 
fraction plot. The critical volume fractions of most 
particle-filled composites lie at about 10%. In addi- 
tion, the curves of Fig. 4 exhibit that at the same filler 
content, L' decreases with decreasing particle diam- 
eter. For a given volume fraction the total filler 
amount in a composite filled with small particles is 
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always larger than in one filled with large particles, 
usually meaning that the contact possibility of the 
larger particles is rarer. As a result, it might be 
deduced that the formation probability of conductive 
paths throughout a composite is closely related 
to L'. 

Kirkpatrick derived the relationship between per- 
colation probability, P(V), and filler concentration 
from his model introduced earlier [6] 

P(V) oc ( V -  Vr 1'5-1"6 (6) 

An important enlightenment is that the probability of 
the conductive network formation might be exponen- 
tially related to the filler content. Considering the 
meaning of L' implied by Fig. 4, the expression for 
G appearing in Equation 4a is written as 

C = V ~ (7) 

where a is defined as a material factor that will be 
discussed later. At the present stage, the dependence of 
the composite's conductivity on filler volume fraction 
can be evaluated from Equation 4 as long as a proper 
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Figure 4 The size of the generalized unit cell versus filler volume 
fraction. D: (--)  10 itm, ( - -  ) 5 gm, (-  -)  2 gm. 

Equation 4a 

G--1 - G  (9a)  (y ~- O'pO s 

with 

(~p = g / p  -~ (1 - -  V )  o" m (9b) 

~s = [ V  9 ~- (1 - -  V )  /O"m] -1 (9c)  

3. Discussion 
The critical volume fractions for carbon black (CB)- 
filled LDPE and PP and powdered silver (Ag)-filled 
silicone rubber composites were reported elsewhere 
[9, 10]. In order to examine the model approach 
suggested here, these literature results and some per- 
formance data [10, 16] are cited for comparison and 
calculation, e.g. P (CB) = 10 -3 flcm, P (Ag)= 1.6 x 
10 . 6  f ~ c m ,  9 (polymer) = 10-15 f~cm, Rp, = 7.0 x 
10 -s f~cm 2 and data in Table I. 

Using Equation 9a and these data, the numerical 
expression of composite conductivity can be obtained. 
On a trial basis, 0.2 is found to be an appropriate 
value for the material factor a in Equation 7. Fig. 
5 shows the results of silver/silicone composites. The 
critical volume fraction, Vo, is determined by the con- 
ventional method, i.e. the peak position of dlogcy/dV 
in the drastically increasing regime. It becomes 

T A B L E  I Comparison of observed critical volume fractions (from 
[9, 101) and the calculated ones (according to Equation 9) 

Fillers Filler diameter (gm) Vr (vol %) 

Observed Calculated 

Ag [9] 9 20 20 
5 15 16 
4 16 12.5 
1 10 11 
0.5 5 5 

CB [103 10 21 
5 15 
2 10.5 
0,37 4.7 6 

value of a is known. However, the effect of contact 
resistance on filler conductivity should also be taken 
into consideration. 

The composite model that regards the conductive 
filler and matrix resin as two separate regimes of the 
two phases is very rough (Fig. 1), because there are 
unavoidable microgaps, voids and resin bridges be- 
tween the filler particles even in the case of closest 
packing. That is, c~0 in Equation 4b and c only rep- 
resents the apparent filler conductivity. For the con- 
duction performance of a particle-filled composite at 
very high loading regime, the composite resistivity, 9, 
is [16] 

0 = Rp,/O + 00/0.59 (8) 

where Rp, is the sum of constriction and tunnelling 
resistance (f~ cm2), and 9o is the filler resistivity. Re- 
placing cyo in Equations 4b and c with the inverse of p, 
one can obtain a more reasonable expression for 
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Figure 5 Calculated electrical conductivity versus filler volume 
fraction of silver/silicone rubber composites. D: (---) 10 gin, ( - - )  

5 g m , (  -)  21xm. 
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Figure 6 Effect of the material factor, a, on the estimated volume 
fraction dependence of conductivity of a silver/silicone rubber com- 
posite, a: ( - ) 0.1, ( --) 0.2. 

two categories and correlates them through Equation 
7, but the exact expression of a, as well as its depend- 
ence on material properties, still remains unknown. 
Furthermore, the fillers in the model composite 
applied to the work are assumed to be spherical 
particles of identical diameter and distributed in 
an fcc  order. S u c h  an approximation disagrees 
with the practical cases. Solving these problems 
might result in a more satisfactory conduction 
model. 

Future work should, therefore, be focused on the 
clarification of the exact physical meaning of the 
material factor. Furthermore, the values of L' should 
be obtained from experimentally measured fractal 
dimensions of real composite cross-sections, so that 
the assumption about filler dimension, shape and 
distribution made in the present work need no 
longer be used. This will help in eliminating the 
resultant deviation from disordered arrays. 

evident, that the theoretical cy-V curves describe the 
known S-shaped relation very well. In addition, the 
calculated critical volume fractions coincide exactly 
with the experimental results published in the litera- 
ture (Table I). It is also seen that the calculated and 
observed Vo values increase with increasing diameter 
of filler particles. These results confirm that the model 
approach of this study is effective in predicting the 
critical volume fractions of conductive particle-filled 
composites. 

It is worth noting that the material factor, a, is an 
important parameter, and cannot be simply regarded 
as a meaningless constant. Obviously, different values 
of a will result in different shapes of the c~-V curve, 
and therefore in different values of Vo (Fig. 6), greater 
value of a corresponds to greater values of Vo. Only for 
a certain value, e.g. 0.2 (in the case of the silver and 
carbon black particle-filled systems evaluated here) 
there is good agreement between the predictions and 
experiments. In fact, the conductive behaviour of 
a composite material manufactured by a given pro- 
cessing technique is basically controlled by two types 
of factors: (1) a geometry factor (including filler di- 
mension, morphology, packing density, relative ar- 
rangement), and (2) a material factor (accounting for 
the filler and matrix species, macroscopic and micro- 
scopic properties, filler matrix compatibility). Both of 
these factors are related to and affect each other. This 
explains why some composites filled with different 
species of conductive particles of similar dimensions 
have quite different critical volume fractions. 
Miyasaka et al. [-10] also indicated that the critical 
volume fraction depends to a great extent upon the 
surface tensions of fillers and matrix resins. By analys- 
ing Equation 7, it is evident that L' obtained from the 
fractal-based consideration reflects the effect of geo- 
metrical factors on the probability of a conductive 
network formation, whereas the value of a takes the 
effects of material parameters into consideration. This 
is also the reason why a is termed a material factor. 
The present work arranges the influence factors under 

4. C o n c l u s i o n  
A generalized unit cell that characterizes the geometri- 
cal details of a composite cross-section has been built 
up using the fractal technique developed by 
Pitchumani and Yao [,12]. The dependence of the 
unit-cell dimension on filler volume fraction is quite 
similar to the conventionally determined electrical re- 
sistivity versus volume fraction of a bulk material. 
Based on this analogy as well as on the work of  
Kirkpatrick [-6], a generalized unit-cell conductive 
model is proposed, which can effectively predict 
the critical volume fraction of a conductive composite. 
The estimations are demonstrated to be rather close 
to the experimental data reported by other re- 
searchers. The approach can also be applied to 
composites filled with other fillers, such as fibres, 
hybridized particles and fibres, as long as minor 
revisions are made on the numerical simulations of 
the composite microstructure. 

The electrically conductive behaviour of a com- 
posite material is dominated by both a geometry 
factor and a material factor. Although the relation- 
ship between them and their combined influence 
on conduction may be derived from the present 
work, efforts must be made to reveal the exact 
expression for the material factor for a satisfactory 
model which is able to predict not only the critical 
volume fraction (as demonstrated in the present 
approach) but also the overall conduction per- 
formance of electrically conductive composites. 
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